
1

Cheng Jin

http://netlab.caltech.edu

FAST TCP:
design, implementation, experiments

Brief History of FAST TCP

 Congestion control as an optimization
problem

 Primal-dual framework to study TCP
congestion control

 Modeling existing TCP implementations
 Theoretical analysis on FAST TCP
 FAST TCP Implememtation

2

Optimization Model

 Network bandwidth allocation as utility
maximization

 Optimization problem

 Primal-dual components
x(t+1) = F(q(t), x(t)) Source
p(t+1) = G(y(t), p(t)) Link

Llcy

xU

ll

s
ss

x s

∈∀≤

∑
≥

 , subject to

)(max
0

Use of Queueing Delay in FAST

 Each FAST TCP flow has a target number
of packets to maintain in network
buffers in equilibrium

 Queueing delay allows FAST to estimate
the number of packets currently
buffered and estimate its distance from
the target

3

Solution: estimate target

 FAST

Scalable to any w*

Slow
Start

FAST
Conv

Equil

Loss
Rec

FAST and Other DCAs

 FAST is an implementation within the
primal-dual framework

 Queueing delay is one example of the
price from the network

 FAST does not use queueing delay to
predict or avoid packet losses

 FAST may use other forms of price in
the future when they become available

4

Packet Level

 ACK: W W + 1/W
 Loss: W W – 0.5 W

 Reno
AIMD(1, 0.5)

 ACK: W W + a(w)/W
Loss: W W – b(w) W

 HSTCP
AIMD(a(w), b(w))

 ACK: W W + 0.01
Loss: W W – 0.125 W

 STCP
MIMD(a, b)

α
RTT

baseRTT
 W W :RTT +⋅← FAST

Architecture

Each component
 designed independently
 upgraded asynchronously

 Data
Control

Window
Control

Burstiness
 Control

Estimation

TCP Protocol Processing

5

Known Issues

 Network latency estimation
 route changes, dynamic sharing
 does not upset stability

 Small network buffer
 at least like TCP Reno
 adapt α on slow timescale, but how?

 TCP-friendliness
 friendly at least at small window
 how to dynamically tune friendliness?

 Reverse path congestion

Experiments

 In-house dummynet testbed
 PlanetLab Internet experiments
 Internet2 backbone experiments
 ns-2 simulations

6

Dummynet Setup

 Single bottleneck link, multiple path latencies
 Iperf for memory-to-memory transfers
 Intra-protocol testings
 Dynamic network scenarios
 Instrumentation on the sender and the router

What Have We Learnt?

 FAST is reasonable under normal
network conditions

 Well-known scenarios where FAST
doesn’t perform well

 Network behavior is important
 Dynamic scenarios are important
 Host implementation (Linux) also

important

7

Dynamic sharing: 3 flowsFAST Linux

HSTCP STCP

Steady throughput

Aggregate Throughput

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

large windows

Ideal CDF

8

Stability

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

stable under
diverse scenarios

Fairness

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

Reno and HSTCP
have similar fairness

9

FAST Linux

throughput

loss

queue

STCPHSTCP

30min

Room for mice !

HSTCP

FAST TCP v.s. Buffer Size
Sanjay Hegde & David Wei

10

Backward Queueing Delay I
Bartek Wydrowski

 Use timestamp option on both sender
and receiver

 Precision limited by sender clock
 Not requiring synchronization, same-

resolution clocks, or receiver
modification

Backward Queueing Delay II
Bartek Wydrowski

1 fw flow
1 bk flow

2 fw flows
1 bk flows

2 fw flows
2 bk flows

11

PlanetLab Internet Experiment

Throughput v.s. loss and delay
qualitatively similar results

FAST saw higher loss due
to large alpha value

Jayaraman & Wydrowski

Linux Related Issues

 Complicated state transition
 Linux TCP kernel documentation

 Netdev implementation and NAPI
 frequent delays between dev and TCP layers

 Linux loss recovery
 too many acks during fast recovery
 high CPU overhead per SACK
 very long recovery times
 Scalable TCP and H-TCP offer enhancements

12

Acknowledgments
 Caltech

 Bunn, Choe, Doyle, Newman, Ravot, Singh, J. Wang
 UCLA

 Paganini, Z. Wang
 CERN

 Martin
 SLAC

 Cottrell
 Internet2

 Almes, Shalunov
 Cisco

 Aiken, Doraiswami, Yip
 Level(3)

 Fernes
 LANL

 Wu

 FAST TCP: motivation, architecture,
algorithms, performance.
IEEE Infocom 2004

 Code reorganization, ready for integration
with web100.

 β-release: summer 2004
Inquiry: fast-support@cs.caltech.edu

http://netlab.caltech.edu/FAST

13

 The End

Implementation Strategy

 Common flow level dynamics

−⋅=

)(

)(
1)()(

' tU

tq
ttw

i

i
i κ

window
adjustment

control
gain

flow level
goal=

 Small adjustment when close, large far away
 Need to estimate how far current state is from tarqet
 Scalable

 Queueing delay easier to estimate compared with
extremely small loss probability

14

TCP/AQM

 Congestion control has two components
 TCP: adjusts rate according to congestion
 AQM: feeds back congestion based on utilization

 Distributed feed-back system
 equilibrium and stability properties determine

system performance

pl(t)

xi(t)TCP:
 Reno
 Vegas
 FAST

AQM:
 DropTail
 RED
 REM/PI
 AVQ

Network Model

 Components: TCP and AQM algorithms, and
routing matrices

 Each TCP source sees an aggregate price, q
 Each link sees an aggregate incoming rate

x y

F1

FN

G1

GL

Rf(s)

Rb(s)

TCP Network AQM

q p

15

FAST TCP

 Flow level
 Understood and Synthesized first

 Packet level
 Designed and implemented later

 Design flow level equilibrium & stability
 Implement flow level goals at packet level

